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Abstract— Humans are well-adept at navigating public spaces
shared with others, where current autonomous mobile robots
still struggle: while safely and efficiently reaching their goals,
humans communicate their intentions and conform to unwritten
social norms on a daily basis; conversely, robots become clumsy
in those daily social scenarios, getting stuck in dense crowds,
surprising nearby pedestrians, or even causing collisions. While
recent research on robot learning has shown promises in data-
driven social robot navigation, good-quality training data is
still difficult to acquire through either trial and error or expert
demonstrations. In this work, we propose to utilize the body of
rich, widely available, social human navigation data in many
natural human-inhabited public spaces for robots to learn
similar, human-like, socially compliant navigation behaviors. To
be specific, we design an open-source egocentric data collection
sensor suite wearable by walking humans to provide multi-
modal robot perception data; we collect a large-scale (∼100
km, 20 hours, 300 trials, 13 humans) dataset in a variety of
public spaces which contain numerous natural social navigation
interactions.1

I. INTRODUCTION

Social navigation is the capability of an autonomous
agent to navigate in a way such that it not only moves
toward its goal but also takes other agents’ objective into
consideration. Most humans are proficient at such a task,
smoothly navigating many public spaces shared with others
on a daily basis: humans form lanes or groups among crowds,
use gaze, head movement, and body posture to communicate
navigation intentions, wait in line to enter congested areas,
or give way to others who are in a rush. With an increasing
amount of autonomous mobile robots being deployed in
public spaces [1], [2], those robots are also expected to
navigate among humans in a similar, human-like, socially
compliant manner.

However, the autonomous navigation performance of these
mobile robots is still far from satisfactory. Despite ex-
tensive robotics effort to create efficient and collision-free
autonomous navigation systems, we still witness the “frozen
robot” problem in dense crowds and robots moving against
upcoming foot traffic or cutting too close to moving humans.
Unfortunately, due to such deficiencies, there is increasing
fear about the public adoption and even safety of humans
around these robots [3], [4]. The current lack of safe and
socially compliant navigation systems still presents a major
hurdle preventing service robots being widely adopted.
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Fig. 1: Data collection in natural human-inhabited public
spaces with the open-source sensor suite including 3D Li-
DAR, stereo and depth camera, IMU, microphone array, and
360° camera.

One avenue toward socially compliant robot navigation
is using machine learning for robots to learn the variety of
unwritten social norms, for which traditional cost functions
are hard to design. For example, Reinforcement Learning
(RL) [5] uses trial-and-error experiences while Imitation
Learning (IL) [6] requires expert demonstrations. However,
both of these learning paradigms require an extensive amount
of training data, which is difficult to acquire: RL in the real
world is extremely expensive due to the limited availability
of robots, while RL in simulation requires a good model
of social navigation interactions of humans, which are what
roboticists are trying to create in the first place; IL requires
demonstration datasets collected on robot platforms, mostly
through expensive human teleoperation at scale [7].

Considering the goal of creating socially compliant robot
navigation and the availability of many humans that excel
at such a task, this work leverages the easily accessible
social human navigation data in public spaces for mobile
robots to learn from. To be specific, we first present an
open source, first-person-view, social human navigation data
collection sensor suite that can be worn on the head of a
walking human and provide easy access to a large body
of readily available, high-quality, natural social navigation
data in the wild for robot learning, as shown in Fig. 1.
Our design includes a set of different robotic sensors: a 3D
Light Detection and Ranging (LiDAR) sensor, stereo and
depth camera, Inertia Measurement Unit (IMU), microphone
array, and 360° camera. We open-source our design and
software so the sensor suite can be easily replicated and used
to collect social human navigation data in different places.
Second, with the new data collection suite, we introduce our
Multi-modal Social Human Navigation dataset (MuSoHu):
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a large-scale, egocentric, multi-modal, and context-aware
dataset of human demonstrations of social navigation. At
the point when this paper is written, MuSoHu contains
approximately 20 hours, 300 trajectories, 100 kilometers of
socially compliant navigation demonstrations collected by
13 human demonstrators that comprise multi-modal data
streams from different sensors, in both indoor and outdoor
environments.

II. RELATED WORK

In this section, we review related work in social robot
navigation and learning from human datasets.

A. Social Robot Navigation

To organically integrate service robots into the fabric
of our society, these robots must be capable of moving
in human-inhabited spaces in a socially compliant manner.
One difficulty in creating such socially compliant navigation
systems is to hand-craft appropriate rules or cost functions to
cope with unwritten social norms in public spaces [8]. There-
fore, researchers have sought help from machine learning and
aimed at learning socially compliant navigation behaviors in
a data-driven manner [9], [10].

RL has shown success in learning a variety of behav-
iors from simulated trial-and-error experiences [11]–[13].
However, the high fidelity of simulated social interactions
required by RL for social navigation poses its own chal-
lenges and requires a good understanding and then analytical
representation of the unwritten social norms to create such
simulated interactions, which is the difficulty in social navi-
gation in the first place. Additionally, the reward function in
RL needs to be carefully-designed but can still be brittle [14].

To address such issues, IL [15], [16] utilizes expert
demonstrations to learn socially compliant navigation behav-
iors [17], [18]. Kretzschmar et al. [19] has proposed Inverse
Reinforcement Learning (IRL) to learn the reward function
from demonstrations for social navigation policies. Behavior
Cloning [15], [16] has treated the social navigation problem
as supervised learning and regressed to an end-to-end motion
policy that maps from perception to actions. However, to
facilitate IL, a large corpus of socially compliant navigation
demonstration data is essential. For example, the Socially
Compliant Navigation Dataset (SCAND) [7] is a recent effort
to provide social robot navigation behaviors demonstrated by
human teleoperation.

B. Learning from Human Datasets

SCAND [7] is a recent dataset that aims at tackling the
challenges of socially compliant robot navigation. SCAND
includes socially compliant, human teleoperated robot nav-
igation demonstrations in indoor and outdoor environments
on The University of Texas at Austin campus. Using SCAND,
researchers have shown that IL policies can be trained end-
to-end for socially-aware global and local planners for robot
navigation. However, SCAND requires a significant amount
of cost and effort to set up and deploy the robot platforms in
the wild and to collect large-scale human-teleoperated robot

navigation demonstrations to cover the plethora of interesting
social interactions in public spaces. Furthermore, how people
react differently to a teleoperated mobile robot followed by
a human operator is also unclear.

Considering the difficulty in acquiring large-scale real-
world data, researchers have also looked into utilizing
recorded videos of human activities in the wild. For ex-
ample Ego4D [20] is an egocentric video dataset, which
offers daily-life activity video of different scenarios (house-
hold, outdoor, workplace, leisure, etc.) captured by different
humans wearing cameras from different locations worldwide.
Ego4D offers a solution to the scalability of datasets by
introducing a standard and wearable design so many people
can collect data in real-world, daily settings from different
parts of the world. However, Ego4D is not specifically
designed for robotics (hence the lack of common robot
sensors and perception like LiDAR, depth camera, IMU, and
odometry), so it is difficult for mobile robots to directly learn
socially compliant navigation behaviors from the raw video
feed in Ego4D.

Inspired by the pros and cons of both SCAND and
Ego4D, we introduce a wearable data collection sensor suite
specifically designed to provide data to enable social robot
navigation. It allows us to collect social human navigation
data from the perspective of a suite of multi-modal robotic
sensors in our daily life with a small setup overhead (i.e.,
with a wearable helmet). We provide a large-scale social
human navigation dataset, which can be easily extended in
the future by robotics researchers all around the world, show
that human-like social robot navigation behaviors can be
learned through such a dataset, and point out future research
directions and anticipated use cases of our dataset. For other
robot navigation datasets which are less relevant to our work
compared to SCAND and Ego4D, we refer the readers to
Table I in the SCAND paper [7].

III. SENSOR SUITE

We design and make publicly available a data collection
device, which is wearable by a human walking in public
spaces and provides multi-modal perceptual streams that are
commonly available on mobile robot platforms.2 We also
process the raw data to extract human navigation behaviors,
i.e., the paths and actions taken by the human demonstrator
to navigate through social spaces.

To be specific, our data collection sensor suite is equipped
with a 3D LiDAR, a stereo and depth camera with built-in
IMU, a microphone array to provide ambient sound, and a
360° camera that offers spherical view of the environment.
All the sensors are mounted to a helmet via open-sourced
hardware to capture egocentric data of the demonstrator
during social navigation. To stream and store real-time social
human navigation data, all sensors are connected to a laptop
carried by the demonstrator with wired connections (Fig. 1
middle).

2https://github.com/RobotiXX/MuSoHu-data-collection
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a) 3D LiDAR: As most mobile robots use LiDARs as
a reliable sensor to acquire accurate and robust geometric
information about the environment, we include a 3D LiDAR
to capture such information around the human demonstrator.
Considering the different heights of the mounting locations
(on robot vs. on our helmet), we use a 3D LiDAR to collect
3D point clouds, which can be converted to 2D scans at
different heights if necessary. We choose a Velodyne Puck
VLP-16 for our sensor suite, which has a range of 100
meters and generates up to 600,000 points/second, across
a 360° horizontal and 30° vertical field of view. The 3D
LiDAR is mounted on the top of the helmet to record spatial
measurements of the surrounding.

b) Stereo and Depth Camera: RGB cameras provide
visual and semantic information of the environment. In
addition to the geometric information provided by the Li-
DAR, semantics also plays a vital role in social navigation
interactions. For example, humans use gesture, gaze, and
body posture to explicitly or implicitly convey navigational
intentions and facilitate interactions. Those behaviors can be
used to understand the intentions of other people sharing
the same space but are difficult to capture with 3D LiDAR
alone. For our sensor suite, we choose Stereolabs ZED 2, a
stereo camera with depth sensing and a built-in IMU (see
below for more details), considering its compact form factor
and efficient power consumption (in contrast to other RGB-
D cameras that require a separate power supply, ZED 2
can be efficiently powered by the same USB cable for data
transmission). The camera is positioned in the front of the
helmet, with the optical axis pointing forward. The wide
120° field of view captures interesting social interactions
happening in front of and from the sides of the human
demonstrator.

c) IMU: Many mobile robots are also equipped with
IMUs to measure linear accelerations and rotational speeds.
Therefore, we also utilize the built-in IMU from the ZED
2 camera and record their raw measurements. It is worth
to note that due to the difference between walking humans
and wheeled or tracked robots that drive, the IMU readings
collected in our dataset may be significantly different than
those from such types of mobile robots, especially the
acceleration along the vertical axis. We posit that to leverage
the IMU data in MuSoHu, special techniques such as transfer
learning [21] may be necessary.

d) Odometry / Actions: Similar to SCAND, we collect
visual-inertia odometry provided by the ZED 2 camera. Such
positional odometry provides learning data of navigation path
and can be utilized to learn robot global planners. Different
than SCAND, in which the robot navigation actions can be
directly recorded as teleoperation commands, our data collec-
tion hardware does not have access to such actions, i.e., how
the human demonstrator walks. Therefore, we extract linear
and angular velocities from the positional odometry using
the difference between two consecutive odometry frames.

e) 360° Camera: In addition to the forward facing
stereo and depth camera, we also collect 360° RGB video
to provide better situational awareness of the surrounding

and include all possible sensory information that can be
provided by active pan-tilt cameras onboard many mobile
robot platforms. We use a Kodak Pixpro Orbit360 4K VR
Camera to collect 360° images. The camera has a very
compact form factor with two lenses integrated in one camera
body to provide spherical 360° view. Note that due to
software limitations the camera’s webcam mode does not
allow both lenses to stream live video to the laptop, so we
save the spherical 360° view from both lenses to an SD card
in the camera.

f) Microphone Array: Although not commonly used
for navigation tasks, microphones are available on many
mobile robot platforms, e.g., for verbal communications.
Furthermore, recent research has started to investigate using
sound for navigation [22]. Considering the extra information
provided by this different perception modality, we also
include a microphone array, a Seeed Studio ReSpeaker Mic
Array v2.0, to collect ambient sound during social human
navigation.

IV. DATASET

The sensor suite described in Sec. III is designed to be
easily replicable by any research group and to collect data
worldwide. But we collect an initial Multi-modal Social
Human navigation dataset (MuSoHu) on the George Mason
University campus and in the Washington DC metropolitan
area (Fig. 2).3

A. Data Collection Procedure

To collect multi-modal, socially compliant, human-level
navigation demonstrations to learn future robot navigation,
seven human demonstrators wear the sensor suite helmet and
navigate to predefined goals in public spaces in a socially
compliant manner. We choose navigation scenarios with
frequent social interactions in various indoor and outdoor
environments at different time periods (e.g., after class or
during weekends). The sensor suite’s superior portability
(i.e., only a helmet and a laptop) also allows us to record
portions of MuSoHu in other settings in the Washington
DC Metropolitan Area, including Fairfax, Arlington, and
Springfield in Virginia and the National Mall in DC. Notably,
for a trajectory at a certain location at the same time
period, in many cases, we record three trials to capture
three navigation contexts, i.e., casual, neutral, and rush,
in which walking speed and safety distance from others
may vary, in order to encourage different social navigation
interactions based on different contexts. We intend such
context awareness in MuSoHu to be useful for future studies
on context-aware social navigation, e.g., social compliance
when facing someone who is about to be late for a class
is different than that when facing someone who is taking a
casual afternoon stroll in the park.

For each trajectory, all sensor data are collected using
the Robot Operating System (ROS) Bag functionality, except
the 360° camera, which does not allow data streaming of

3https://dataverse.orc.gmu.edu/dataset.xhtml?
persistentId=doi:10.13021/orc2020/HZI4LJ
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Fig. 2: Three example data frames in Old Town Alexandria, VA, Springfield Towncenter, VA, and National Mall, Washington
DC. 360° view (top), 3D LiDAR point cloud (bottom left), and depth image (bottom right) are shown for each data frame.

Fig. 3: Learned Obstacle Avoidance Behavior from MuSoHu.

both built-in cameras to provide spherical 360° view to ROS.
Therefore, we store the 360° video on an SD card and
provide synchronization using a movie clapboard.

B. Dataset Analyses

1) Labeled Annotations of Social Interactions: MuSoHu
includes a list of textual tags for each trajectory that describe
the different social interactions that occur along the path. We
expand beyond the tags from SCAND and the full list of 17
predefined labels can be found in Table I (with five new tags
in bold font).

2) Proof-of-Concept Usage: We use a small subset of
MuSoHu data (ten navigation trials) to train a Behavior
Cloning policy that maps from raw LiDAR input to linear
and angular velocity. The learned policy is deployed on
two physical robots, an AgileX Hunter SE (an Ackermann
steering wheeled vehicle) and a Unitree Go1 (a quadruped
robot), both of which exhibit collision avoidance behavior
learned from MuSoHu (Fig. 3).

V. CONCLUSIONS

We present a large-scale, multi-modal, social human nav-
igation dataset, MuSoHu, to allow robots to learn human-
like, socially compliant navigation. Our open-sourced design
allows our portable sensor suite to be easily replicated and
used to collect data in a variety of public spaces worldwide.
Such an easy access to a variety of natural social navigation
interactions in human-inhabited public spaces in the wild is
shown in our preliminary experiments to be useful to learn
social robot navigation.

TABLE I: Descriptions of Label Tags Contained in MuSoHu.

Tag Description # Tags
Against Traffic Navigating against oncoming traffic 210

With Traffic Navigating with oncoming traffic 170

Street Crossing Crossing across a street 120

Overtaking Overtaking a person or groups of
people 100

Sidewalk Navigating on a sidewalk 160

Passing
Conversational

Groups

Navigating past a group of 2 or more
people that are talking amongst

themselves
94

Blind Corner Navigating past a corner where the
human cannot see the other side 90

Narrow
Doorway

Navigating through a doorway where
the human opens or waits for others

to open the door
45

Crossing
Stationary

Queue
Walking across a line of people 50

Stairs Walking up and/or down stairs 30

Vehicle
Interaction Navigating around a vehicle 26

Navigating
Through Large

Crowds

Navigating among large unstructured
crowds 45

Elevator Ride Navigating to, waiting inside, and
exiting an elevator 15

Escalator
Ride Navigating to and riding an escalator 6

Waiting in
Line

Waiting in Line to enter congested
areas 5

Time: Day Navigation during day time 150

Time: Night Navigation during night time 40
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